Comparison of Internal Clustering Validation Indices for Prototype-Based Clustering
نویسندگان
چکیده
Clustering is an unsupervised machine learning and pattern recognition method. In general, in addition to revealing hidden groups of similar observations and clusters, their number needs to be determined. Internal clustering validation indices estimate this number without any external information. The purpose of this article is to evaluate, empirically, characteristics of a representative set of internal clustering validation indices with many datasets. The prototype-based clustering framework includes multiple, classical and robust, statistical estimates of cluster location so that the overall setting of the paper is novel. General observations on the quality of validation indices and on the behavior of different variants of clustering algorithms will be given.
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملPerformance of an Ensemble Clustering Algorithm on Biological Data Sets
Ensemble clustering is a promising approach that combines the results of multiple clustering algorithms to obtain a consensus partition by merging different partitions based upon well-defined rules. In this study, we use an ensemble clustering approach for merging the results of five different clustering algorithms that are sometimes used in bioinformatics applications. The ensemble clustering ...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملModel-based evaluation of clustering validation measures
A cluster operator takes a set of data points and partitions the points into clusters (subsets). As with any scientific model, the scientific content of a cluster operator lies in its ability to predict results. This ability is measured by its error rate relative to cluster formation. To estimate the error of a cluster operator, a sample of point sets is generated, the algorithm is applied to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 10 شماره
صفحات -
تاریخ انتشار 2017